Hahn-Hausman Test as a Specification Test*

Yoonseok Lee† Ryo Okui‡

First draft: April 2009
This version: October 2011

Abstract

This paper develops a modified version of the Sargan (1958, *Econometrica* 26(3): 393-415) test statistic of overidentifying restrictions, and shows that it is numerically equivalent to the test statistic of Hahn and Hausman (2002, *Econometrica* 70(1): 163-189) up to a sign. The modified Sargan test is constructed such that its asymptotic distribution under the null hypothesis of correct specification is standard normal when the number of instruments increases with the sample size. The equivalence result is useful in understanding what the Hahn-Hausman test detects and its power properties.

Keywords and phrases: Hahn-Hausman test; Sargan test; many instruments; overidentifying restrictions test; specification test.

JEL classification: C12; C21.

*Previous versions are circulated under the title “A Specification Test for Instrumental Variables Regression with Many Instruments.” The authors acknowledge the valuable comments from Takeshi Amemiya, the associate editor, two anonymous referees, Donald Andrews, Mehmet Caner, Juan Carlos Escanciano, Nikolay Gospodinov, Jinyong Hahn, Han Hong, Simon Lee, Yukitoshi Matsushita, Whitney Newey, Taisuke Otsu, Peter Phillips, Mototsugu Shintani and Katsumi Simotsu, along with seminar participants at Columbia, Yale, the Kobe meeting of the Kansai Econometric Society, the 2009 SETA meeting, and the 2009 Far East and South Asia Meeting of the Econometric Society. Lee thanks the Cowles Foundation for Research in Economics at Yale University, where he was a visiting fellow while writing this paper. Okui appreciates the financial support from Japan Society of the Promotion of Science under KAKENHI22730176 and KAKENHI22330067. The usual disclaimer applies.

†Corresponding author. Department of Economics, University of Michigan, 611 Tappan Street, Ann Arbor, MI 48109-1220, USA. Email: yoolee@umich.edu

‡Institute of Economic Research, Kyoto University, Yoshida-Hommachi, Sakyo, Kyoto, Kyoto, 606-8501, Japan. Email: okui@kier.kyoto-u.ac.jp
1 Introduction

The conventional asymptotic theory often provides a poor approximation of the finite sample distribution of instrumental variables estimators or test statistics for instrumental variables regressions. Examples are with weak instruments (e.g., Staiger and Stock, 1997; Stock and Wright, 2000) or many instruments (e.g., Morimune, 1983; Bekker, 1994; Han and Phillips, 2006; Andrews and Stock, 2007; Hansen et al., 2008; Newey and Windmeijer, 2009; Chao et al., 2010; van Hasselt, 2010; Anatolyev and Gospodinov, 2011). Hahn and Hausman (2002, HH hereafter) propose a test that examines the adequacy of the standard asymptotic result in linear instrumental variables regression models.

This paper contributes to the literature by developing a modified version of the Sargan test (1958) of overidentifying restrictions, and shows that it is numerically equivalent to the HH test statistic up to a sign. The modification is such that the asymptotic distribution of the test statistic is standard normal under the null hypothesis of correct specification, when the number of instruments increases with the sample size like Bekker (1994). Though these two tests are developed from very different motivations, the equivalence tells that they indeed examine the common hypothesis: the orthogonality between the instruments and the structural equation error.

This equivalence result provides many interesting implications. First of all, it explains why the HH test does not have power in detecting weak instruments (e.g., Hausman et al., 2005): It indeed tests for the exogeneity of the instruments. This finding also enables us to examine its power properties. The equivalence result is useful for overcoming several limitations of the original HH test. For example, we can easily handle cases with multiple endogenous regressors or with the LIML estimators in the modified Sargan test. Moreover, as the Sargan test is a special case of the J-test by Hansen (1982), the result provides a direction to extend the HH test to more general setup, such as moment-condition-based nonlinear models, whereas it is not clear how to generalize the idea of using reverse regression in HH for nonlinear models.

Several studies are closely related to the modified Sargan test developed in this paper. Andrews and Stock (2007) and Newey and Windmeijer (2009) consider testing problems with many weak instruments though the number of instruments is restricted such that it increases at a much slower rate than that of the sample size. Anatolyev and Gospodinov (2011) develop a modification of the critical values of the overidentifying restrictions test so that the test has correct size based on the chi-square approximation, when the number of instruments is proportional to the sample size. Chao
et al. (2010) develop a specification test under heteroskedasticity for linear instrumental variables regressions with many instruments.

The remainder of the paper is organized as follows. Section 2 describes the basic framework and develops the modified Sargan test. Section 3 establishes the equivalence between the modified Sargan test and the HH test up to a sign. Section 4 discusses the implications of the equivalence results and concludes the paper. All the mathematical proofs are provided in Appendix.

2 Model and Modified Sargan Test

We consider a linear instrumental variables regression model given by

\[y_i = X_i'\beta + u_i \]

for \(i = 1, 2, \cdots, n \), where \(y_i \) is the scalar outcome variable and \(X_i \) is the \(r \times 1 \) vector of regressors that is possibly correlated with an unobserved error \(u_i \). Let \(Z_i \) be a \(K \times 1 \) vector of instruments, which we treat as deterministic, where \(r \leq K < n \). Throughout the paper, we consider the asymptotic sequence under which both the sample size \(n \) and the number of instruments \(K \) tend to infinity with satisfying

\[\alpha_n \equiv K/n \to \alpha \text{ as } n, K \to \infty \]

for some \(0 \leq \alpha < 1 \). However, the number of regressors \(r \) is fixed and does not depend on \(n \) nor \(K \). We exclude the fixed \(K \) case, but \(\alpha \) can be zero when \(K \) diverges at a rate slower than \(n \). We further assume that

\[X_i = \Pi'Z_i + V_i, \]

where \(\Pi \) is the \(K \times r \) matrix of parameters whose value may depend on \(n \) as well as \(K \). The unobservables \(\varepsilon_i = (u_i, V_i')' \) are assumed to be independently and identically distributed (i.i.d.) and we define

\[\text{Var} (\varepsilon_i) \equiv \Sigma = \begin{pmatrix} \sigma_u^2 & \sigma_{Vu}' \\ \sigma_{Vu} & \Sigma_V \end{pmatrix}, \tag{1} \]

where \(\sigma_{Vu} \neq 0 \) so that \(X_i \) is correlated with \(u_i \) through the correlation between \(u_i \) and \(V_i \). We make the following assumptions, where we let \(P = Z (Z'Z)^{-1} Z' \) with \(Z = (Z_1, \cdots, Z_n)' \).

Assumption 1. (i) \(\alpha_n = \alpha + o(n^{-1/2}) \) for some \(0 \leq \alpha < 1 \) as \(n, K \to \infty \). (ii) \(Z \) and \(\Pi \) are of full column rank. (iii) \(\varepsilon_i \) are i.i.d. for \(i = 1, \cdots, n \) with mean zero and positive definite variance matrix \(\Sigma \) in (1); the fourth moment of \(\varepsilon_i \) exists. (iv) \(\Pi'Z'Z\Pi/n \to \Theta \) as \(n, K \to \infty \), where \(\Theta \)
is positive definite and finite. (v) \(\sup_{1 \leq i \leq n} |Z_i'\pi_j| < \infty \) for all \(j = 1, \ldots, r \), where \(\pi_j \) is the \(j \)th column of \(\Pi \). (vi) \(\sup_{n \geq 1} \sup_{1 \leq j \leq n} \sum_{i=1}^{n} P_{ij}/\sqrt{\alpha_n} < \infty \), where \(P_{ij} \) is the \((i, j)\)th element of \(P \). (vii) \(\sum_{i=1}^{n} (P_{ij}^2 - \alpha_n^2)/(n\alpha_n) \) converges as \(n, K \to \infty \). (viii) \(X_i \) and \(u_i \) have finite eighth moments.

Assumption 1 is similar to the assumption in van Hasselt (2010), which is for the central limit theorem of the quadratic forms under many instrument framework. Note that \(\varepsilon_i \) is assumed homoskedastic though it does not need to be normal. See van Hasselt (2010) for more discussions about the assumptions. Condition (viii) is for the consistency of the asymptotic variance estimator of the modified Sargan test statistic defined below.

We let \(\hat{\beta}_{2sls} = (X'PX)^{-1} X'Py \) be the two-stage least squares (2SLS) estimator, where \(X = (X_1, \ldots, X_n)' \) and \(y = (y_1, \ldots, y_n)' \). The standard Sargan test statistic (Sargan, 1958) is defined as

\[
S_n(\hat{\beta}_{2sls}) = \hat{u}'P\hat{u}/\hat{\sigma}_u^2, \tag{2}
\]

where \(\hat{u} = y - X\hat{\beta}_{2sls} \) and \(\hat{\sigma}_u^2 = \hat{u}'\hat{u}/n \). It is well known that under the null hypothesis \(E(u_iZ_i) = 0 \), the standard asymptotic theory (i.e., when \(K \) is fixed) gives \(\hat{\beta}_{2sls} - \beta = O_p(n^{-1/2}) \) and

\[
S_n(\hat{\beta}_{2sls}) \to_d \chi_{K-r}^2 \text{ as } n \to \infty. \tag{3}
\]

When \(K \to \infty \), however, the right hand side of (3) diverges and the asymptotic distribution of \(S_n(\hat{\beta}_{2sls}) \) is not well-defined. We need to modify the Sargan test statistic properly in order to analyze its asymptotic distribution.

More precisely, we let \(\hat{B} \) be a consistent estimator of \(\lim_{n,K \to \infty} \hat{u}'P\hat{u}/n \) given by\(^1\)

\[
\hat{B} = \alpha_n \left(\hat{u}_b'\hat{u}_b/n \right) - \left(\hat{u}_b'PX/n \right) \left(X'PX/n \right)^{-1} \left(X'P\hat{u}_b/n \right),
\]

where \(\hat{u}_b = y - X\hat{\beta}_{2sls} \) and

\[
\hat{\beta}_{2sls} = \{ X' (P - \alpha_n I) X \}^{-1} X' (P - \alpha_n I) y
\]

is the bias-corrected 2SLS estimator (e.g., Nagar, 1959) that satisfies \(\hat{\beta}_{2sls} - \beta = O_p(n^{-1/2}) \) even when \(n, K \to \infty \) with \(\alpha \neq 0 \). Then we can show that

\[
\sqrt{n/\alpha_n} \left(\hat{u}'P\hat{u}/n - \hat{B} \right) \to_d N(0, w) \text{ as } n, K \to \infty \tag{4}
\]

under Assumption 1 (technical details are in Lemmas A.1 and A.2 in Appendix), where

\[
w = 2(1 - \alpha)\sigma_u^4 + \left(\lim_{n,K \to \infty} \sum_{i=1}^{n} (P_{ii}^2 - \alpha_n^2)/(n\alpha_n) \right) (E\sigma_u^4 - 3\sigma_u^4). \tag{5}
\]

\(^1\)Note that \(\hat{u}'P\hat{u}/n = u'P_{uu}/n - u'PX/n(X'PX/n)^{-1} X'P_{uu}/n \to_p \alpha \sigma_u^2 - \alpha^2 \sigma_{vu}^2(\Theta + \alpha \Sigma_v)^{-1} \sigma_{vu} \) as \(n, K \to \infty \).
Note that, different from HH and Anatolyev and Gospodinov (2011), we allow for the case \(\alpha = 0 \). This difference necessitates us normalizing \(\hat{u}'P\hat{u}/n \) by \(\sqrt{n/\alpha_n} \) in (4) instead of \(\sqrt{n} \), and thus the rate of convergence of \(\hat{u}'P\hat{u}/n \) is faster than \(\sqrt{n} \) when \(\alpha = 0 \). This asymptotic result can handle the cases with \(\alpha > 0 \) and with \(\alpha = 0 \) in a unified framework.\(^2\)

From (4), a specification test can be obtained as the \(t \)-test statistic
\[T_n = \hat{d}_1 / \sqrt{\hat{w}}, \] (6)
where
\[
\hat{d}_1 = \sqrt{n/\alpha_n} \left(\hat{u}'P\hat{u}/n - \hat{B} \right),
\]
\[
\hat{w} = 2(1 - \alpha_n) \left(\hat{u}'_b\hat{u}_b/n \right)^2 + \left(\sum_{i=1}^n \left(P_{ii}^2 - \alpha_n^2 \right) / (n\alpha_n) \right) \left(\sum_{i=1}^n \hat{u}_{bi,i}^4/n - 3 \left(\hat{u}'_b\hat{u}_b/n \right)^2 \right)
\]

with \(\hat{u}_{bi,i} \) being the \(i \)th element of \(\hat{u}_b \). One remark is that
\[
\hat{u}'P\hat{u}/n - \hat{B} = \hat{u}'_b(P - \alpha_nI)\hat{u}/n
\] (7)
holds with \(I \) being the \(n \)-dimensional identity matrix. See Appendix A.1 for the proof of (7).

Therefore, \(T_n \) can be re-expressed as
\[T_n = \hat{d}_2 / \sqrt{\hat{w}} \quad \text{with} \quad \hat{d}_2 = \sqrt{n/\alpha_n} \left(\hat{u}'_b(P - \alpha_nI)\hat{u}/n \right). \] (8)

This expression provides another interpretation of \(T_n \): It is the standardized version of the minimized objective function for \(\hat{b}_{2sls} = \arg \min_{\beta} (y - X\beta)'(P - \alpha_nI)(y - X\beta) \). Because the 2SLS estimator \(\hat{b}_{2sls} \) is biased in the presence of many instruments, bias correction is necessary when constructing overidentifying restrictions test statistics. This remark demonstrates that bias correction for the estimators (viz., (8)) is equivalent to bias correction for the test statistics (viz., (6)) in the linear instrumental variables regression, since (7) implies \(\hat{d}_1 = \hat{d}_2 \).

If we further assume that \(u_i \) is normally distributed as considered in Bekker (1994) and thus \(\mathbb{E}u_i^4 = 3\sigma^4 \), then the asymptotic variance \(w \) can be simply estimated by
\[
\hat{w} = 2(1 - \alpha_n) \left(\hat{u}'_b\hat{u}_b/n \right)^2.
\]

In this case, we can develop a simpler test statistic \(\tilde{T}_n \) given by
\[
\tilde{T}_n = \hat{d}_2 / \sqrt{\hat{w}} = \left\{ S_n(\hat{b}_{2sls}) - K \right\} / \sqrt{2K(1 - \alpha_n)}, \quad (9)
\]

\(^2\)Since we need to accommodate the possibility of \(\alpha = 0 \), the arguments made in the proof are slightly different from those of HH and Anatolyev and Gospodinov (2011).
where \(S_n(\hat{\beta}_{2sls}) = \hat{u}^\prime_b \hat{P} \hat{u}_b / (\hat{u}^\prime_b \hat{u}_b / n) \) is the standard Sargan statistic in (2) using the bias-corrected 2SLS estimator \(\hat{\beta}_{2sls} \) instead of \(\hat{\beta}_{2sls} \). The expression (9) motivates us to call \(\tilde{T}_n \) and \(T_n \) as modified Sargan test statistics, in which the modification is to accommodate many instrument asymptotics.

The following theorem gives the asymptotic null distribution of the modified Sargan test statistics under many instrument asymptotics.

Theorem 1. If Assumption 1 holds, \(T_n \rightarrow_d \mathcal{N}(0, 1) \) as \(n, K \rightarrow \infty \) under \(\mathbb{E}(u_i Z_i) = 0 \). In addition, when \(u_i \) is normally distributed, \(\tilde{T}_n \rightarrow_d \mathcal{N}(0, 1) \).

3 Equivalence Results

The HH-test examines the adequacy of the standard asymptotic result in linear instrumental variables regression models, using the difference between the instrumental variables estimator and the inverse of that from the reverse regression. For the scalar \(X_i \) case, more precisely, they consider

\[
\Delta_n = X^\prime(P - \alpha_n I)y - y^\prime(P - \alpha_n I)y
\]

which is formulated using the bias-corrected 2SLS estimators. When the standard asymptotic results are violated, these two estimators have different probability limits. Assuming normality, the HH-test statistic in this case is defined as

\[
m_2 = \sqrt{n} \Delta_n \left[\frac{2K}{n - K} \cdot \frac{\left\{ (y - X\hat{\beta}_{2sls})^\prime (y - X\hat{\beta}_{2sls}) \right\}^2}{\beta^2_{2sls} \{ X^\prime P X - (K/(n - K)) X^\prime (I - P) X \}^2} \right]^{-1/2}.
\]

3(9) does not exactly correspond to the normal-approximation of the chi-square random variable because of the additional factor \(1 - \alpha_n \) in the denominator. See Anatolyev (2012) on this point.

4When we use \(T_n \) in practice, one problem is that we do not know whether to use the chi-square approximation or the standard normal approximation. As an anonymous referee notes, Anatolyev and Gospodinov (2011) propose a solution by adjusting the critical values so that the chi-square approximation works regardless of the choice of the asymptotic sequence.

5HH propose two test statistics, \(m_1 \) and \(m_2 \), where \(m_1 \) is based on the 2SLS estimator and \(m_2 \) is based on the bias-corrected 2SLS estimator (i.e., (11)). Theorem 4-3 in HH illustrates that, however, these two test statistics are equivalent (asymptotically). Since \(m_2 \) is relatively more tractable for our purpose, we only consider \(m_2 \) here. But Theorem 2 below can be naturally extended to the equivalence between \(m_1 \) and \(\tilde{T}_n \). Also note that there is a minor difference between \(m_2 \) here and that given in HH: HH uses the LIML estimator to compute the standard error while we use the bias-corrected 2SLS estimator. However, the difference disappears at a rate faster than \(n^{-1/2} \).
Noting that \((y - X\hat{\beta}_{2sls})'(P - \alpha_n I)X = 0\), however, the difference (10) can be rewritten as

\[
\Delta_n = \hat{\beta}_{2sls} - \frac{(y - X\hat{\beta}_{2sls} + X\hat{\beta}_{2sls})'(P - \alpha_n I)y}{X'(P - \alpha_n I)y} = -\frac{(y - X\hat{\beta}_{2sls})'(P - \alpha_n I)y}{X'(P - \alpha_n I)y} = -\frac{(y - X\hat{\beta}_{2sls})'(P - \alpha_n I)(y - X\hat{\beta}_{2sls})}{X'(P - \alpha_n I)y}.
\] (12)

Interestingly, this expression gives that the HH-test statistic \(m_2\) in (11) is numerically equivalent to the modified Sargan test statistic \(\hat{T}_n\) in (9) up to a sign. Therefore, the HH-test can be regarded as a modification of Sargan’s overidentifying restrictions test, where the modification is made to accommodate many instrument asymptotics.

Theorem 2. It holds that \(m_2 = \hat{T}_n \cdot \text{sgn}[-X'(P - \alpha_n I)y]\), where \(\text{sgn}[:]\) gives the sign of its argument.

Theorem 2 shows the equivalence between the two test statistics that are constructed under normality. (Note that the main results of HH are also developed assuming normality.) Though details are omitted, the equivalence result can be also obtained without normality between \(T_n\) in (6) and the HH-test statistic based on the variance expression in Theorem 4-4 of HH.

The equivalence result remains to hold under more general cases with multiple endogenous regressors. For example, we consider the case of two endogenous regressors \(X = (x_1, x_2)\), where \(x_1\) and \(x_2\) are \(n \times 1\) vectors. We let \(\hat{\beta}_1\) and \(\hat{\beta}_2\) be the bias-corrected 2SLS estimators of the coefficient on \(x_1\) and \(x_2\), respectively, using instruments \(Z\). It appears that

\[
\hat{\beta}_1 = \frac{x_2'(P - \alpha_n I)x_2 \cdot x_1'(P - \alpha_n I)y - x_1'(P - \alpha_n I)x_2 \cdot x_2'(P - \alpha_n I)y}{x_1'(P - \alpha_n I)x_1 \cdot x_2'(P - \alpha_n I)x_2 - \{x_1'(P - \alpha_n I)x_2\}^2}.
\]

We also consider the reverse regression of \(x_1\) on \(y\) and \(x_2\) using the same instruments \(Z\), and let \(\hat{\delta}_1\) and \(\hat{\delta}_2\) be the bias-corrected 2SLS estimators of the coefficient on \(y\) and \(x_2\), respectively. We can find that

\[
\hat{\delta}_1 = \frac{x_2'(P - \alpha_n I)x_2 \cdot x_1'(P - \alpha_n I)y - x_1'(P - \alpha_n I)x_2 \cdot x_2'(P - \alpha_n I)y}{y'(P - \alpha_n I)y \cdot x_2'(P - \alpha_n I)x_2 - \{y'(P - \alpha_n I)x_2\}^2}.
\]

Under normality, the HH-test statistic for two endogenous variables is given by

\[
m_3 = \sqrt{n\bar{w}^{-1/2}} \left(\hat{\beta}_1 - \hat{\delta}_1^{-1}\right),
\] (13)

where

\[
\bar{w} = \frac{2K}{n - K} \cdot \hat{\beta}_1^2 \frac{(y - x_1\hat{\beta}_1 - x_2\hat{\beta}_2)'(y - x_1\hat{\beta}_1 - x_2\hat{\beta}_2)}{\left[\left(\hat{x}_1^t P_{x_1} - (K/(n - K))x_1'(I - P)x_1 - \frac{\{\hat{x}_1^t P_{x_2} - (K/(n - K))x_1'(I - P)x_2\}^2}{\left(\hat{x}_2^t P_{x_2} - (K/(n - K))x_1'(I - P)x_2\right)^2}\right]^2}.
\]

The following theorem shows that \(m_3\) in (13) is also numerically equivalent to \(\hat{T}_n\) up to a sign.
Theorem 3. It holds that $m_3 = \tilde{T}_n \cdot \text{sgn}[-\tau_1]$, where
\[
\tau_1 = x_1'(P - \alpha_n I)y - x_1'(P - \alpha_n I)x_2 \cdot x_2'(P - \alpha_n I)y \cdot x_2'(P - \alpha_n I)x_2.
\]
Note that if we let $\hat{x}_1 = (P - \alpha_n I)x_1$ and $\hat{x}_2 = (P - \alpha_n I)x_2$, which are the predicted x_1 and x_2 from the first-stage regression (with some modification to correct the bias), τ_1 reflects the sample covariance between \hat{x}_1 and y after \hat{x}_2 being projected out: $\tau_1 = \hat{x}_1'\{I - \hat{x}_2(\hat{x}_2'\hat{x}_2)^{-1}\hat{x}_2\}y$. In comparison, τ_1 is simply $\hat{x}_1'y$ when there is only one endogenous regressor x_1 in Theorem 2.

4 Implications

The equivalence result between the HH-test and the modified Sargan test gives several interesting implications. First, HH state that the rejection of the null hypothesis implies an inadequacy of the conventional asymptotic results. The equivalence result in Section 3, however, implies that the HH-test is indeed a test for the moment condition $E(u_i Z_i) = 0$. Therefore, the HH-test is supposed to have power toward the violation of the instrument-exogeneity or specification, not in detecting the presence of weak or irrelevant instruments. This finding also corresponds to what Hausman et al. (2005) find: The HH-test has very little power in detecting weak instruments.

Using the equivalence result, the power property of the HH-test in detecting the violation of the instrument-exogeneity can be readily analyzed by investigating that of the modified Sargan test.\footnote{Here we consider the behavior of T_n but the essentially same result holds for \tilde{T}_n.}

We suppose that the data generating process is given by
\[
y_i = X_i'\beta + e_i \quad \text{with} \quad e_i = Z_i'\gamma + u_i \quad \text{and} \quad X_i = \Pi'Z_i + V_i,
\]
where e_i is the error term that may be correlated with Z_i and γ is a $K \times 1$ parameter vector. Here $\gamma = 0$ corresponds to the exogeneity assumption of the instruments. We consider the following Pitman-type local alternative:
\[
H_a : \gamma = \alpha_n^{1/4} \xi,
\]
where ξ be a $K \times 1$ nonrandom vector, which does not depend on the sample size n. The following theorem shows that the modified Sargan test (and so does the HH-test from the equivalence result) consistently detects the same set of alternatives the standard Sargan test detects.
Theorem 4. Suppose that as \(n, K \to \infty \), both \(\xi'Z_iZn/\sqrt{n} \) and \(\xi'Z'\Pi/n \) converge; \(\xi'Z'V/n = o_p(1) \) and \(\xi'Z'u/\sqrt{n} = O_p(1) \). Under Assumption 1 and (14), \(T_n \to_d N(C/\sqrt{w},1) \) as \(n, K \to \infty \), where

\[
C = (1 - \alpha) \left\{ \left(\lim_{n,K \to \infty} \xi'Z\xi/n \right) - \left(\lim_{n,K \to \infty} \xi'Z\Pi/n \right) \left(\lim_{n,K \to \infty} \Pi'Z\Pi/n \right)^{-1} \left(\lim_{n,K \to \infty} \Pi'Z\xi/n \right) \right\}.
\]

The test thus has a nontrivial power against local alternatives that contract to the null at the rate of \(n^{-1/2} \) when \(K \) is fixed; and \(n^{-1/4} \) when \(K \) is proportional to the sample size (i.e., \(K/n \to \alpha \in (0,1) \)). This result illustrates the difficulty of detecting a violation of the instrument-exogeneity condition in the presence of many instruments. When \(C = 0 \), in addition, the test cannot detect this type of local alternative in (14). A leading example is the case of \(\gamma = \Pi \) when the dimension of \(X \) is one. This inconsistency of overidentifying restrictions tests is also observed when \(K \) is fixed (e.g., Newey, 1985). It thus shows that the overidentifying restrictions test cannot detect local alternatives with \(C = 0 \) regardless of whether \(K \) is fixed or increasing with \(n \).

Second, it is worth noting that the HH-test is two-sided because the test statistic is defined by the difference between two estimates and thus we do not know, a priori, whether a violation of the null hypothesis gives a large negative or positive value of the test statistic. On the other hand, the modified Sargan test is one-sided. When \(\hat{u}'Z \) (or \(\hat{u}'_bZ \)) is close to zero and so is the standard Sargan test statistic (i.e., \(\mathbb{E}(u_iZ_i) = 0 \) likely holds), the modified Sargan test statistic has a large negative value (see, e.g., (9)) and it should be designed not to reject \(\mathbb{E}(u_iZ_i) = 0 \) in such a case. Moreover, \(C \) in Theorem 4 is non-negative for any \(\xi \), which implies that a violation of the null hypothesis \(\mathbb{E}(u_iZ_i) = 0 \) (if it can be detected) results in a large positive value of the test statistic \(T_n \). If \(\mathbb{E}(u_iZ_i) = 0 \) is the null hypothesis, therefore, using the one-sided test based on \(T_n \) should achieve a higher power than the HH-test.

Third, HH rule out cases of \(\beta = 0 \) because an ingredient of the HH-test statistic is the inverse of an estimator. The equivalence result shows that, however, \(\beta = 0 \) does not cause any problem because we can write the HH-test statistic as \(T_n \) that can be well-defined even when \(\beta = 0 \).

Lastly, the equivalence result is useful when we consider the HH-test in more general settings. For example, the test statistic with two endogenous regressors in Section 5 of HH is very compli-

7These conditions are satisfied when \(Z_i\xi, \Pi'Z_i, V_i \) and \(u_i \) have finite fourth-order moments, for example.

8Simulation results on comparing the size and power properties between the modified Sargan test and the HH-test can be found in Lee and Okui (2009).

9We note that \(C = (1 - \alpha) \lim_{n,K \to \infty} n^{-1} \xi'Z \left\{ I - \Pi (\Pi'Z\Pi)^{-1} \Pi'Z' \right\} \xi \geq 0 \) since \(1 - \alpha > 0 \) and \(I - \Pi (\Pi'Z\Pi)^{-1} \Pi'Z' \) is idempotent.
cated and a larger number of endogenous regressors are difficult to be considered. However, it is straightforward to consider multiple endogenous regressors in the modified Sargan test framework as we discussed in the previous section. Furthermore, as the Sargan test is a special case of the J-test by Hansen (1982), we could consider nonlinear moment restriction models by developing a modified J-test in the presence of many moment conditions, whereas it is not clear how to extend the use of reverse regression equations to such general cases.10 Another extension is to use the LIML estimator $\hat{\beta}_{\text{lml}} = \arg \min_{\beta} (y - X\beta)'P(y - X\beta)/(y - X\beta)'(y - X\beta)$, which is shown to possess good properties in the presence of many instruments (e.g., Anderson et al., 2010). Note that we cannot extend the idea of HH directly using the LIML estimators because the LIML estimator is the optimal linear combination of the bias-corrected forward and reverse 2SLS estimators (HH, p.169): The two LIML estimators become identical and thus the HH-test statistic based on LIML is zero. However, the modified Sargan test can use $\hat{\beta}_{\text{lml}}$ by obtaining the regression residual from it, and it still satisfies the asymptotic normality of Theorem 1 since $\hat{\beta}_{\text{lml}} - \beta = O_p(n^{-1/2})$ (e.g., van Hasselt, 2010).

A Appendix: Mathematical Proofs

Throughout the appendix, van Hasselt (2010) is referred to as vH.

A.1 Proof of (7)

We note that

\begin{align}
(y - X\hat{\beta}_{2sls})'(P - \alpha_n I)(y - X\hat{\beta}_{2sls}) &= (y - X\hat{\beta}_{2sls} - X\hat{\beta}_{2sls} + X\hat{\beta}_{2sls})'P(y - X\hat{\beta}_{2sls} - X\hat{\beta}_{2sls} + X\hat{\beta}_{2sls}) \\
&\quad - \alpha_n (y - X\hat{\beta}_{2sls})'(y - X\hat{\beta}_{2sls}) \\
&= (y - X\hat{\beta}_{2sls})'P(y - X\hat{\beta}_{2sls}) - \alpha_n (y - X\hat{\beta}_{2sls})'(y - X\hat{\beta}_{2sls}) \\
&\quad + (\hat{\beta}_{2sls} - \hat{\beta}_{2sls})'X'PX(\hat{\beta}_{2sls} - \hat{\beta}_{2sls}),
\end{align}

where the last equality follows because $(y - X\hat{\beta}_{2sls})'PX = 0$. Since

\begin{align}
\hat{\beta}_{2sls} - \hat{\beta}_{2sls} = (X'PX)^{-1}X'Py - \hat{\beta}_{2sls} = (X'PX)^{-1}X'P(y - X\hat{\beta}_{2sls}),
\end{align}

the last component (A.1) is $(y - X\hat{\beta}_{2sls})'PX(X'PX)^{-1}X'P(y - X\hat{\beta}_{2sls})$, which gives (7) for $n\hat{B} = \alpha_n (y - X\hat{\beta}_{2sls})'(y - X\hat{\beta}_{2sls}) - (y - X\hat{\beta}_{2sls})'PX(X'PX)^{-1}X'P(y - X\hat{\beta}_{2sls})$. \hfill \Box

10Apparently, it is not straightforward to consider the J-test in a general GMM setup particularly when K and n are proportional; we leave this extension as future research. We note that Newey and Windmeijer (2009, Theorem 5) provide an asymptotic result for the J-test under many weak moments asymptotics though they restrict the number of instruments to grow much slower than the sample size.
A.2 Proof of Theorem 1

We first present two technical lemmas used to prove the theorem.

Lemma A.1. Under Assumption 1, as $n, K \to \infty$ we have

\[
\frac{1}{\sqrt{n\alpha_n}} u'(P - \alpha_n I)u \to_d \mathcal{N}(0, w),
\]

\[
\frac{1}{\sqrt{n}} u'(P - \alpha_n I)X = O_p(1),
\]

\[
\frac{1}{n} X'(P - \alpha_n I)X \to_p (1 - \alpha)\Theta.
\]

Proof of Lemma A.1. We use Theorem 1 of vH to show (A.2). The matrices U, M, V, C, Ω and α in Theorem 1 of vH are now $(u, X, (0, \Sigma), (u, V), (P - \alpha_n I), \Sigma)$ and $(1, 0, \cdots, 0)'$ in this case, respectively. We verify that vH1 is similarly satisfied as above. A1(iii) implies vH1(a); A1(v) implies vH1(b); and A1(iv), (vi) and (vii) imply vH1(c). Therefore, under A1, the conditions for Theorem 1 of vH are satisfied, which yields $u'(P - \alpha_n I)u/\sqrt{n\alpha_n} \to_d \mathcal{N}(0, w)$ as $n, K \to \infty$, where w is given as (5).

We also apply Theorem 1 of vH to show (A.3). The matrices U, M, V, C, Ω and α in Theorem 1 of vH are now $(u, X), (0, \Sigma), (u, V), (P - \alpha_n I), \Sigma$ and $(1, 0, \cdots, 0)'$ in this case, respectively. We verify that vH1 is similarly satisfied as above. A1(iii) implies vH1(a); A1(v) implies vH1(b); and A1(iv), (vi) and (vii) imply vH1(c). Therefore, under A1, Theorem 1 of vH yields (A.3) as $\mathbb{E}[u'(P - \alpha_n I)X] = 0$. Lastly, given $\mathbb{E}[X'(P - \alpha_n I)X] = (1 - \alpha_n)\Pi'\Sigma'\Pi$, (A.4) follows.

Lemma A.2. Under Assumption 1, we have $(y - X\hat{\beta}_{sls})'(y - X\hat{\beta}_{sls})/n \to_p \sigma_u^2$ and $\sum_{i=1}^n (y_i - X_i\hat{\beta}_{sls})^4 / n \to_p \mathbb{E}(u_i^4)$ as $n, K \to \infty$.

\footnote{It should be noted that the CLT for quadratic forms by vH is closely related to the CLT by Kelejian and Prucha (2001, 2010). For example, (A.2) can be proved directly from Kelejian and Prucha (2001, 2010) when $K, n \to \infty$ but $K/n \to 0 > 0$.}
Proof of Lemma A.2 First, we have
\[
\frac{1}{n}(y - X\hat{\beta}_{2s})' (y - X\hat{\beta}_{2s}) = \frac{1}{n}(\beta - \hat{\beta}_{2s})' X'(\beta - \hat{\beta}_{2s}) + \frac{2}{n}(\beta - \hat{\beta}_{2s})' X'u + \frac{1}{n}u' u \rightarrow_p \sigma_u^2
\]
under Assumption 1 since \(\beta - \hat{\beta}_{2s} \rightarrow_p 0\) as \(n, K \rightarrow \infty\) by Theorem 3 of vH and it can be easily verified that \(X'X/n = O_p(1), X'u/n = O_p(1)\) and \(u'/n \rightarrow_p \sigma_u^2\). Second, we similarly have
\[
\frac{1}{n} \sum_{i=1}^{n} (y_i - X_i\hat{\beta}_{2s})^4 = \frac{1}{n} \sum_{i=1}^{n} u_i^4 + \frac{4}{n} \sum_{i=1}^{n} \left\{ X_i' (\beta - \hat{\beta}_{2s}) \right\} u_i^3 + \frac{6}{n} \sum_{i=1}^{n} \left\{ X_i' (\beta - \hat{\beta}_{2s}) \right\} u_i^2 + \frac{4}{n} \sum_{i=1}^{n} \left\{ X_i' (\beta - \hat{\beta}_{2s}) \right\} u_i + \frac{1}{n} \sum_{i=1}^{n} \left\{ X_i' (\beta - \hat{\beta}_{2s}) \right\}^4
\]
\[
= \frac{1}{n} \sum_{i=1}^{n} u_i^4 + o_p(1) \rightarrow_p E(u_i^4)
\]
from Assumption 1. The last equality follows because
\[
\left| \frac{1}{n} \sum_{i=1}^{n} \left\{ X_i' (\beta - \hat{\beta}_{2s}) \right\}^4 \right| \leq \frac{1}{n} \sum_{i=1}^{n} \| X_i \|^4 \| \beta - \hat{\beta}_{2s} \|^4 = O_p(1) o_p(1) = o_p(1)
\]
by the existence of the eighth order moment of \(X_i\) and \(\beta - \hat{\beta}_{2s} \rightarrow_p 0\), where \(\| \cdot \|\) is the Euclidean norm. A similar argument can show that \(\sum_{i=1}^{n} \left\{ X_i' (\beta - \hat{\beta}_{2s}) \right\}^2 u_i/n = O_p(1)\), \(\sum_{i=1}^{n} \left\{ X_i' (\beta - \hat{\beta}_{2s}) \right\}^2 u_i^2/n = o_p(1)\) and \(\sum_{i=1}^{n} \left\{ X_i' (\beta - \hat{\beta}_{2s}) \right\} u_i^3/n = o_p(1)\).

Proof of Theorem 1 We observe that
\[
(y - X\hat{\beta}_{2s})' (P - \alpha_n I)(y - X\hat{\beta}_{2s}) = u'(P - \alpha_n I)u + (\hat{\beta}_{2s} - \beta)' X'(P - \alpha_n I)X(\hat{\beta}_{2s} - \beta) - 2(\hat{\beta}_{2s} - \beta)' X'(P - \alpha_n I)u
\]
\[
= u'(P - \alpha_n I)u + u'(P - \alpha_n I)X \left\{ X'(P - \alpha_n I)X \right\}^{-1} X'(P - \alpha_n I)u
\]
for \(\hat{\beta}_{2s} - \beta = (X'(P - \alpha_n I)X)^{-1} X'(P - \alpha_n I)u\). Therefore, Lemma A.1 implies
\[
\sqrt{n} \alpha_n \left\{ \frac{1}{n} (y - X\hat{\beta}_{2s})' (P - \alpha_n I)(y - X\hat{\beta}_{2s}) \right\}
\]
\[
= \frac{1}{\sqrt{n} \alpha_n} u'(P - \alpha_n I)u + \frac{1}{\sqrt{K}} \left\{ \frac{1}{\sqrt{n}} u'(P - \alpha_n I)X \right\} \left\{ \frac{1}{n} X'(P - \alpha_n I)X \right\}^{-1} \left\{ \frac{1}{\sqrt{n}} X'(P - \alpha_n I)u \right\}
\]
\[
= \frac{1}{\sqrt{n} \alpha_n} u'(P - \alpha_n I)u + o_p(1) \rightarrow_d N(0, w)
\]
as \(n, K \rightarrow \infty\). Furthermore, Lemma A.2 implies that \(\hat{w} \rightarrow_p w\) as \(\alpha_n = \alpha + o(n^{-1/2})\). It thus follows that \(T_n \rightarrow_d N(0, 1)\) as \(n, K \rightarrow \infty\). Under the normality, it is easy to see that \(\hat{w} \rightarrow_p w\), so \(\hat{T}_n \rightarrow_p N(0, 1)\) follows. □
A.3 Proof of Theorem 2

It is straightforward from (9) and (11) because (12) implies

\[
m_2 = \frac{\alpha_n^{-1}}{2(1 - \alpha_n)} \left\{ \frac{(y - \hat{X}_1 n y)(P - \alpha_n I)(y - \hat{X}_1 n y)}{X'(P - \alpha_n I)X} \right\} = \frac{\hat{d}_2}{\sqrt{\hat{w}}} \times \left\{ \frac{-|X'(P - \alpha_n I)y|}{X'(P - \alpha_n I)y} \right\}. \tag*{\Box}
\]

A.4 Proof of Theorem 3

Note that

\[
(y - x_1 \hat{\beta}_1)'(P - \alpha_n I)x_2 = (y - x_1 \hat{\beta}_1 - x_2 \hat{\beta}_2)'(P - \alpha_n I)x_2 + \hat{\beta}_2 x_2'(P - \alpha_n I)x_2
\]

by the definition of the estimators \(\hat{\beta}_1 \) and \(\hat{\beta}_2 \). It gives

\[
\begin{align*}
(y - x_1 \hat{\beta}_1)'(P - \alpha_n I)y \cdot x_2'(P - \alpha_n I)x_2 - \hat{\beta}_2 x_2'(P - \alpha_n I)x_2 \cdot y'(P - \alpha_n I)x_2 \\
= \{x_2'(P - \alpha_n I)x_2 \} \cdot (y - x_1 \hat{\beta}_1 - x_2 \hat{\beta}_2)'(P - \alpha_n I)y \\
= \{x_2'(P - \alpha_n I)x_2 \} \cdot (y - x_1 \hat{\beta}_1 - x_2 \hat{\beta}_2)'(P - \alpha_n I)(y - x_1 \hat{\beta}_1 - x_2 \hat{\beta}_2),
\end{align*}
\]

where the last equality follows from the fact that \((y - x_1 \hat{\beta}_1 - x_2 \hat{\beta}_2)'(P - \alpha_n I)x_1 = 0 \) and \((y - x_1 \hat{\beta}_1 - x_2 \hat{\beta}_2)'(P - \alpha_n I)x_2 = 0 \). Thus, the difference between the two estimators can be written as

\[
\hat{\beta}_1 - \frac{1}{\hat{\delta}_1} = \frac{(y - x_1 \hat{\beta}_1)'(P - \alpha_n I)y \cdot x_2'(P - \alpha_n I)x_2 - (y - x_1 \hat{\beta}_1)'(P - \alpha_n I)x_2 \cdot y'(P - \alpha_n I)x_2}{x_2'(P - \alpha_n I)x_2 \cdot x_2'(P - \alpha_n I)x_2} \times \sqrt{n\alpha_n d_2},
\]

where \(\hat{d}_2 = \sqrt{n/\alpha_n(\hat{u}_b'(P - \alpha_n I)\hat{u}_b/n)} \) with the regression residual \(\hat{u}_b = y - x_1 \hat{\beta}_1 - x_2 \hat{\beta}_2 \). Since

\[
\hat{w} = 2\alpha_n(1 - \alpha_n) \left\{ \frac{(y - x_1 \hat{\beta}_1 - x_2 \hat{\beta}_2)'(y - x_1 \hat{\beta}_1 - x_2 \hat{\beta}_2)}{\hat{\beta}_1} \right\} \quad \hat{w} = \frac{n^2\alpha_n}{\hat{\beta}_1} \left[x_1'(P - \alpha_n I)x_1 - \frac{x_1'(P - \alpha_n I)x_2^2}{x_2'(P - \alpha_n I)x_2} \right]^2,
\]

with \(\hat{w} = 2(1 - \alpha_n)(\hat{u}_b'(P - \alpha_n I)\hat{u}_b/n)^2 \) in this case, it follows that

\[
\frac{\sqrt{n\hat{w}}^{-1/2} \left(\hat{\beta}_1 - \frac{1}{\hat{\delta}_1} \right)}{\hat{w}} = -\text{sgn}[\tau_1] \frac{\hat{d}_2}{\sqrt{\hat{w}}} = \tilde{T}_n \cdot \text{sgn}[\tau_1],
\]

where

\[
\tau_1 = \hat{\beta}_1 \left[x_1'(P - \alpha_n I)x_1 - \frac{x_1'(P - \alpha_n I)x_2^2}{x_2'(P - \alpha_n I)x_2} \right] = x_1'(P - \alpha_n I)y - \frac{x_1'(P - \alpha_n I)x_2 \cdot x_2'(P - \alpha_n I)y}{x_2'(P - \alpha_n I)x_2}. \tag*{\Box}
\]

12
A.5 Proof of Theorem 4

We observe that, for \(y = X\beta + Z\gamma + u \) in this case,

\[
\hat{\beta}_{bsls} - \beta = (1 - \alpha_n)^{1/4} \left\{ \frac{1}{n} X'(P - \alpha_n I)X \right\}^{-1} \frac{1}{n} X'Z\xi + \left\{ \frac{1}{n} X'(P - \alpha_n I)X \right\}^{-1} \frac{1}{n} X'(P - \alpha_n I)u = o_p(1)
\]

from Lemma A.1 since \(X'Z\xi/n = \Pi'Z'Z\xi/n + V'Z\xi/n = O_p(1) \) is assumed. Thus, \(\hat{\beta}_{bsls} \) is consistent, even under the local alternative. Similarly to Lemma A.2, it follows that \((y - X\hat{\beta}_{bsls})'(y - X\hat{\beta}_{bsls})/n \to_p \sigma_u^2 \) and \(\sum_{i=1}^n (y_i - X_i\hat{\beta}_{bsls})^4/n \to_p E(u_i^4) \), which yield \(\hat{w} \to_p w \) as \(n,K \to \infty \).

Next, we investigate the property of the numerator of the test statistic. Given \(y - X\hat{\beta}_{bsls} = [I - X\{X'(P - \alpha_n I)X\}^{-1}X'(P - \alpha_n I)](Z\gamma + u) \), we obtain

\[
(y - X\hat{\beta}_{bsls})'(P - \alpha_n I)(y - X\hat{\beta}_{bsls}) = (Z\gamma + u)'(P - \alpha_n I)(Z\gamma + u)
\]

\[
= (1 - \alpha_n)\gamma'Z\gamma + 2(1 - \alpha_n)\gamma'Z'u + u'(P - \alpha_n I)u
\]

\[
- \{ (1 - \alpha_n)\gamma'Z'X + u'(P - \alpha_n I)X \} \{ X'(P - \alpha_n I)X \}^{-1} \{ (1 - \alpha_n)X'Z\gamma + X'(P - \alpha_n I)u \},
\]

where the last equality follows because \((P - \alpha_n I)Z = (1 - \alpha_n)Z\). Then using the local alternative \(\gamma = (\alpha_n/n)^{1/4} \xi \), we have

\[
\frac{1}{\sqrt{n\alpha_n}} \gamma'Z\gamma = \frac{1}{n} \xi'Z\xi,
\]

\[
\frac{1}{\sqrt{n\alpha_n}} \gamma'Z'u = \frac{1}{n^{1/4}\alpha_n^{1/4}} \frac{1}{\sqrt{n}} \xi'Z'u = \frac{1}{K^{1/4}} O(1) = o_p(1),
\]

\[
\frac{1}{n^{3/4}\alpha_n^{1/4}} \gamma'Z'X = \frac{1}{n} \xi'Z'(Z\Pi + V) = \frac{1}{n} \xi'Z'Z\Pi + o_p(1).
\]

In addition, Lemma A.1 shows that

\[
\frac{1}{n^{3/4}\alpha_n^{1/4}} u'(P - \alpha_n I)X = \frac{1}{n^{1/4}\alpha_n^{1/4}} \frac{1}{\sqrt{n}} u'(P - \alpha_n I)X = \frac{1}{K^{1/4}} O_p(1) = o_p(1).
\]

Lastly, Lemma A.1 gives that \(u'(P - \alpha_n I)u/\sqrt{n\alpha_n} \to_d N(0,w) \) and \(X'(P - \alpha_n I)X/n \to_p (1 - \alpha) \lim_{n,K \to \infty} \Pi'Z'Z\Pi/n \). Therefore,

\[
\hat{d}_2 = (y - X\hat{\beta}_{bsls})'(P - \alpha_n I)(y - X\hat{\beta}_{bsls})/\sqrt{n\alpha_n} \to_d N(C, w),
\]

where \(C \) is given in Theorem 4. □

References

